157 research outputs found

    Tracking and imaging gamma ray experiment (TIGRE) for 1 to 100 MEV gamma ray astronomy

    Get PDF
    A large international collaboration from the high energy astrophysics community has proposed the Tracking and Imaging Gamma Ray Experiment (TIGRE) for future space observations. TIGRE will image and perform energy spectroscopy measurements on celestial sources of gamma rays in the energy range from 1 to 100 MeV. This has been a difficult energy range experimentally for gamma ray astronomy but is vital for the future considering the recent exciting measurements below 1 and above 100 MeV. TIGRE is both a double scatter Compton and gamma ray pair telescope with direct imaging of individual gamma ray events. Multi‐layers of Si strip detectors are used as Compton and pair converters CsI(Tl) scintillation detectors are used as a position sensitive calorimeter. Alternatively, thick GE strip detectors may be used for the calorimeter. The Si detectors are able to track electrons and positrons through successive Si layers and measure their directions and energy losses. Compton and pair events are completely reconstructed allowing each event to be imaged on the sky. TIGRE will provide an order‐of‐magnitude improvement in discrete source sensitivity in the 1 to 100 MeV energy range and determine spectra with excellent energy and excellent angular resolutions. It’s wide field‐of‐view of π sr permits observations of the entire sky for extended periods of time over the life of the mission

    FiberGLAST: a scintillating fiber approach to the GLAST mission

    Get PDF
    FiberGLAST is a scintillating fiber gamma-ray detector designed for the GLAST mission. The system described below provides superior effective area and field of view for modest cost and risk. An overview of the FiberGLAST instrument is presented, as well as a more detailed description of the principle elements of the primary detector volume. The triggering and readout electronics are described, and Monte Carlo Simulations of the instrument performance are presented

    Calibration of the Milagro Cosmic Ray Telescope

    Get PDF
    The Milagro detector is an air shower array which uses the water Cherenkov technique and is capable of continuously monitoring the sky at energies near 1 TeV. The detector consists of 20000 metric tons of pure water instrumented with 723 photo-multiplier tubes (PMTs). The PMTs are arranged in a two-layer structure on a lattice of 3 m spacing covering 5000 m2m^2 area. The direction of the shower is determined from the relative timing of the PMT signals, necessitating a common time reference and amplitude slewing corrections to improve the time resolution. The calibration system to provide these consists of a pulsed laser driving 30 diffusing light sources deployed in the pond to allow cross-calibration of the PMTs. The system is capable of calibrating times and the pulse-heights from the PMTs using the time-over-threshold technique. The absolute energy scale is provided using single muons passing through the detector. The description of the calibration system of the Milagro detector and its prototype Milagrito will be presented.Comment: 4 pages, submitted to the XXVI International Cosmic Ray Conferenc

    First results of a study of TeV emission from GRBs in Milagrito

    Get PDF
    Milagrito, a detector sensitive to γ-rays at TeV energies, monitored the northern sky during the period February 1997 through May 1998. With a large field of view and high duty cycle, this instrument was used to perform a search for TeV counterparts to γ-ray bursts. Within the Milagrito field of view 54 γ-ray bursts at keV energies were observed by the Burst And Transient Satellite Experiment (BATSE) aboard the Compton Gamma-Ray Observatory. This paper describes the results of a preliminary analysis to search for TeV emission correlated with BATSE detected bursts. Milagrito detected an excess of events coincident both spatially and temporally with GRB 970417a, with chance probability 2.8×10−5 within the BATSE error radius. No other significant correlations were detected. Since 54 bursts were examined the chance probability of observing an excess with this significance in any of these bursts is 1.5×10−3. The statistical aspects and physical implications of this result are discussed

    Search for Short Duration Bursts of TeV Gamma Rays with the Milagrito Telescope

    Get PDF
    The Milagrito water Cherenkov telescope operated for over a year. The most probable gamma-ray energy was ~1 TeV and the trigger rate was as high as 400 Hz. We have developed an efficient technique for searching the entire sky for short duration bursts of TeV photons. Such bursts may result from "traditional" gamma-ray bursts that were not in the field-of-view of any other instruments, the evaporation of primordial black holes, or some as yet undiscovered phenomenon. We have begun to search the Milagrito data set for bursts of duration 10 seconds. Here we will present the technique and the expected results. Final results will be presented at the conference.Comment: submitted to XXVI International Cosmic Ray Conference, Salt Lake Cit

    Instrumented Water Tanks can Improve Air Shower Detector Sensitivity

    Full text link
    Previous works have shown that water Cherenkov detectors have superior sensitivity to those of scintillation counters as applied to detecting extensive air showers (EAS). This is in large part due to their much higher sensitivity to EAS photons which are more than five times more numerous than EAS electrons. Large area water Cherenkov detectors can be constructed relatively cheaply and operated reliably. A sparse detector array has been designed which uses these types of detectors to substantially increase the area over which the Milagro Gamma Ray Observatory collects EAS information. Improvements to the Milagro detector's performance characteristics and sensitivity derived from this array and preliminary results from a prototype array currently installed near the Milagro detector will be presented.Comment: 4 pages, submitted to XXVI International Cosmic Ray Conference, Salt Lake Cit

    Study of the Shadows of the Moon and the Sun with VHE Cosmic Rays

    Full text link
    Milagrito, a prototype for the Milagro detector, operated for 15 months in 1997-8 and collected 8.9 billion events. It was the first extensive air shower (EAS) array sensitive to showers intiated by primaries with energy below 1 TeV. The shadows of the sun and moon observed with cosmic rays can be used to study systematic pointing shifts and measure the angular resolution of EAS arrays. Below a few TeV, the paths of cosmic rays coming toward the earth are bent by the helio- and geo-magnetic fields. This is expected to distort and displace the shadows of the sun and the moon. The moon shadow, offset from the nominal (undeflected) position, has been observed with high statistical significance in Milagrito. This can be used to establish energy calibrations, as well as to search for the anti-matter content of the VHE cosmic ray flux. The shadow of the sun has also been observed with high significance.Comment: 4 pages, submitted to XXVI International Cosmic Ray Conference, Salt Lake Cit
    • 

    corecore